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ABSTRACT 
 
The growing clinical importance of Diffusion tensor imaging 
(DTI) in disease investigation has prompted large population 
studies that require computational neuroanatomic techniques 
for tensor processing, as conventional analysis of scalar 
maps of DTI does not identify the full impact of pathology. 
In this paper we propose a comprehensive framework called 
Manifold Based Morphometry (MBM) for the 
computational and statistical analysis of DTI datasets, 
consisting of spatial normalization to a template, followed 
by voxel-based analysis based on embedding the tensors to a 
linear submanifold using kernel-based manifold learning and 
applying statistics in this embedded space. Regions of 
significant difference are identified and compared with those 
found with conventional voxel-based analysis of scalar maps 
of anisotropy and diffusivity. MBM has then been applied to 
the group-based statistical analysis of dataset of 
schizophrenia patients and controls. The comparison yields 
that MBM consisting of the full tensor DTI analysis reveals 
regions of difference that encompass regions identified by 
the analysis of scalar maps thereby reinforcing the 
comprehensive nature of the designed framework.  
     Index terms - Diffusion Tensor Imaging, manifolds, 
statistics, voxel-based analysis, population study, schizophrenia  
 

1. INTRODUCTION 
 
DTI [1] has gained wide acceptance as an MR modality that 
provides a non-invasive index of WM micro-structural 
integrity [2], and anatomical connectivity [3], by quantifying 
the magnitude and directionality of microscopic water 
diffusion in the WM, and is being increasingly used in the 
investigation of WM diseases. However, DTI may have an 
even more crucial role to play in the study of 
neuropsychiatric disorders such as schizophrenia [4], where 
conventional radiological evaluations fail to detect 
substantial WM differences. The growing clinical 
importance of DTI in disease investigation has prompted 
large population longitudinal and cross-sectional studies of 
WM changes in the brain, which can lead to early diagnosis 
of disease or to a more effective monitoring of treatment. 
This has generated a need for sophisticated computational 
neuroanatomic techniques for processing and statistically 

analyzing DTI data, in order to identify and quantify 
complex patterns of structural changes associated with inter-
individual variability and those induced by pathology. While 
such techniques have been successfully developed for 
analysis of conventional structural MR images [5], their 
development for DTI data is challenging  due to its high 
dimensionality and complex and non-linear underlying 
structure. These issues also make linear methods of 
statistical analysis developed for structural MR images [5], 
inapplicable to DTI data.  
 
In the absence of established computational neuroanatomy 
tools for analyzing DTI data, current studies address DTI 
analysis by analyzing the scalar maps of anisotropy and 
diffusivity computed from the spatially normalized DTI data 
of the population. These scalar maps have been analyzed 
using ROI based methods that require appropriate a priori 
knowledge of regions of deficit, or by voxel-based 
morphometric methods applied to scalar maps [5]. While 
this analysis may be repeated for all scalar maps,  correlating 
results across the various scalar maps, each of which may 
provide a unique region of significant difference, fails to 
reveal the full impact of pathology on tensor data. 
Recognizing the shortcomings of the existing DTI analysis 
approaches, in this paper we try to address and alleviate 
these issues by developing a paradigm for a full voxel-based 
analysis of the tensor data called Manifold Based 
Morphometry. Following spatial normalization of the DTI 
data, the crux of our framework lies in our novel method for 
voxel-based statistical analysis of tensors that learns the 
underlying statistical distribution of the tensor data and 
embeds it into a kernelized linear space on which linear 
statistics can be applied to identify regions of difference. 
These regions are then tested for multiple comparisons with 
a used defined threshold. The regions that survive are 
regions with most significant difference. In the subsequent 
sections, we give details of the MBM framework (section 2), 
describe application of these methods to schizophrenia 
dataset and discuss results (section 3), followed by the 
conclusions and summary (section 4). 
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2. MBM: COMPUTATIONAL NEUROANATOMY OF 
DTI  

 
We have developed a comprehensive framework for the 
group-based analysis of DTI data called Manifold Based 
Morphometry. Suppose the population consists of N 
subjects. These could be grouped on the basis of pathology: 
patients and controls, gender etc.  It consists of two stages: 
Stage 1: spatial normalization of the DTI data of the groups 
to a template using deformable registration,  Stage 2: voxel-
based application of tensor manifold analysis, that facilitates 
tensor statistics and produces regions of significant 
difference.  Each of these stages is described in greater 
detail below.  
 
2.1. Stage 1: Spatial Normalization  
One of the study subjects is chosen as a template, to which 
all the DTI datasets are spatially normalized. DTI spatial 
normalization is particularly challenging as in addition to 
estimating a local deformation, either rigid or non-rigid, 
between the subject and the template, tensors must also be 
reoriented consistent with the underlying anatomical 
structure. Existing methods for registration of DT images are 
based on registering some scalar map computed from the 
tensors (e.g. fractional anisotropy (FA) and trace) [6, 7] 
followed by tensor reorientation, or by incorporating 
registration and reorientation into a multi-channel approach 
[8]. For our experiments, we have adopted a well validated 
method of DTI registration based on the registration of FA 
images [6]. Prior to applying the voxel based analysis, we 
smoothed the DTIs using Gaussian smoothing (with 
sigma=4 mm) in the Log-Euclidean domain [9]. The scalar 
maps of  FA and trace have been equivalently smoothed so 
that the analysis is comparable.  
 
2.2 Stage 2: Manifold-based analysis  
Developing methods for an integrated analysis of DTI 
involving statistics of the data is challenging because tensors 
are restricted to lie on a non-linear sub-manifold of the space 

6R that needs to be determined along with defining a 
geodesic distance along the manifold that would replace 
Euclidean distance in the linear space, and which could then 
be used to define tensor combinations.  We have developed 
several methods that estimate the underlying manifold 
structure using manifold learning [10] or by estimating the 
distribution through kernel based methods [11]. While either 
of the methods are applicable to large studies – however in 
the case of kernel based methods, we are sure that the 
underlying data at each voxel has been Gaussianized.  
 
Kernel-based Manifold Learning We use kernel-based 
techniques to implicitly learn the underlying manifold 
structure of a set of tensors and their statistical distribution.  
In our case this set represents the tensor measurements at a 
given voxel from these N individuals that have been 

spatially normalized to the template. Kernel principal 
component analysis (kPCA) can effectively learn the 
probability density of the tensors under consideration. In 
addition kernel Fisher discriminant analysis (kFDA) can find 
features that can optimally discriminate between groups. 
Mathematical details of the process of learning the 
distribution using kernels can be found in the paper [11], 
along with studies to determine sensitivity of kernel-based 
learning to noise in the tensor data and its ability to 
determine the statistical distribution of  the data.  
 
Statistical Analysis We apply kPCA on the voxel-based 
samples to obtain highly informative projections. We then 
apply the kFDA technique  which finds scalar projections 
onto a single RKHS direction that can optimally 
discriminate between groups. The projections found by the 
application of kPCA and kFDA are linear and linear 
multivariate statistics can be applied to this data. Having 
obtained our kernel-based features, we then apply the two-
sided t-test in the case of the kFDA, in order to obtain a 
voxel-wise p-value map. It may be noted that the Hotelling 
test cannot be applied to non-linear high dimensional data, 
and hence the data was embedded to a linear kernelized 
space prior to the application of the statistical test. We then 
correct the p-value maps for multiple comparisons in a non-
parametric manner via permutation tests  and without any 
distributional assumptions [12, 13] by controlling the false 
discovery rate (FDR) [13] using a suitable p-value threshold. 
We then perform connected component analysis on this 
binary image and drop the components or clusters that 
contained very few voxels and are spurious clusters occuring 
due to noise.   
             In summary, the framework of Manifold Based 
Morphometry for the DTI analysis of large population 
studies, consists of the following steps: 1) spatial 
normalization of the DTI to a template, followed by 2) 
application of manifold-based analysis to tensors voxel-wise 
across the whole population, and 3) applying T-test to these 
kernelized datasets to identify regions of significant 
difference, that are then tested using FDR based on a user-
defined threshold.  In the next section, we apply our 
framework to study a dataset of schizophrenia patients and 
matched healthy controls.  
 

3. RESULTS AND DISCUSSION 
 
We have applied MBM to the DTI data of schizophrenia 
patients. We also perform conventional DTI analysis on 
these images.  
 
3.1 Schizophrenia Dataset  
The dataset consists of 34 patients (21 male and 13 female) 
and 36 healthy controls (17 male and 19 female). The 
controls are matched to the patients by age, sex and 
ethnicity.   
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Fig. 3: Kernel- based analysis applied to the full 
brain and regions with p-value < 0.01 overlaid on 
the FA map. Regions of difference: (a-c) female 
patients and controls, (d) male patients and controls 
(e) all  patients and controls.  Red indicates higher 
significance than blue regions with more changes 
seen in females. 

 
3.2 Group-based analysis of FA- and ADC scalar maps  
The FA and ADC maps were created for each subject and 
warped to one of the healthy controls, chosen to be the 
template for this study. We then performed SPM-based [14] 
analysis on these spatially normalized FA and ADC maps 
separately and studied the interaction between patients and 
healthy controls, genderwise. Several regions showed group 
as well as sex differences at p  = 0.01 and SPM smoothing 
of 10, indicative of trends of change.  In Fig. 1(a), we see   
regions of difference between FA maps of male patients and 
controls, especially in the internal capsule and the genu of 
the corpus callosum. Fig. 1(b) shows regional changes in 
female patients and controls especially in the corona radiata. 
In Fig. 1(c) we see trends of collective group difference in 
the WM regions. Fig. 2 shows the predominantly GM 
regions of difference in the ADC maps. This analysis shows 
that different regions are identified by different scalar maps 
and with several more scalar maps possible, it is difficult to 
get a comprehensive picture of the effect of pathology from 
the independent analysis of these scalar maps. Also none of 
these regions were significantly different and permutation 
testing was not used.  
 
3.3 Kernel-based tensor analysis   
We applied MBM (as described in section 2.2) to the 
spatially normalized DTI datasets. Subsequently on applying 
the T-test followed by FDR we obtain a p-map of the levels 
of change.  None of the regions showed up to be highly 
significant. As the sample size is small for high dimensional 

statistics estimation, we should consider these regions as 
trends of change. Fig. 3 shows regions with p < 0.1 (in the p 
maps generated as a result of applying voxel-based tensor 
statistics) indicating trends of change in several WM and 
GM regions. The analysis shows that female patients versus 
controls demonstrate differences in the corpus callossum, 
corona radiata, posterior limb of the internal capsule, 
cortico-spinal tract, insula, Heschl’s gyrus and large regions 
of the temporal lobe.  In males, prominent regions of change 
are the caudate, putamen, corpus callossum. The GM 
regions show a lateralization of effect as can be in the figure. 
Fig. 3( a – c) shows changes in females, 3(d) in males and 
3(e) when all the subjects are taken together without gender 
being accounted for. Along with the changes in WM, 
prominent GM regions are also identified. Differences 
become more pronounced in the analysis of females, 
although the combined map shows changes in the temporal 
and occipital lobes.  

 
4. DISCUSSION AND CONCLUSIONS 

 
Structural MRI studies in schizophrenia [15] have 
demonstrated regional brain abnormalities, especially in the 
gray matter. DTI-based research in schizophrenia [16] has 
revolved around studying WM changes and possible 
abnormalities in inter-hemispheric connectivity through the 
corpus callossum and intra-hemispheric connectivity 
between frontal, temporal and occipital lobes via association 
fibers. Study is mainly based on FA and ADC values of 
specific regions under study or voxel based analysis as 

Fig. 2: SPM analysis of 
spatially normalized ADC 
maps reveals differences  
between patients and 
controls in gray matter 
regions  

(b) 

Fig. 1: SPM analysis of spatially normalized FA maps 
reveals differences  between patients and controls in 
internal capsule in males (a) and in the cingulum in 
females (b). (c) shows differences between the whole 
patient and control population without considering 
gender.  

(a) 

(b) 

(c) 
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described above in section 3.2.  The application of MBM 
method for tensor analysis produces a comprehensive map 
of change, both in the white matter and the gray matter, 
covering most of the regions identified by the analysis of FA 
and ADC maps, along with additional regions, thereby 
demonstrating its significance for DTI analysis.  
 
Some of the important regions identified by MBM are 
regions in the corpus callosum which is responsible for the 
left-right connectivity in the brain, parts of the cortico-spinal 
tract, disruption of which are responsible for motor function 
deficit, internal capsule, parts of the insula and limbic region 
which are responsible for emotion processing, as well as the 
temporal lobe, which is involved in high-level visual 
processing of complex stimuli such as faces and scenes, as 
well as spatial memory, have shown significant deficits in 
our analysis. As deficits in perception, emotion, behavior  
and memory are deficits related to schizophrenia and since 
the regions identified compares with the regions 
hypothesized to change in schizophrenia, it establishes the 
significance of the full tensor analysis, which presents a 
unified comprehensive picture.  
          MBM on DTI has produced comprehensive results of 
group differences,  identifying differences in regions and 
tracts, some of which have also been  identified by other 
disjoint conventional methods (FA and fiber tracking) 
independently.  However as can be seen we need both FA 
and ADC analyses, as neither of them showed all the 
differences simultaneously. The full tensor analysis via 
MBM also shows additional regions and tracts of change. 
Thus it is beneficial to do this, as compared to analyzing all 
possible scalar maps from DTI data and performing 
individual voxel-based analysis on these. We propose to 
correlate these regions of change with neuropsychiatric 
scores or other clinical measures of deficit, to correlate the 
effect of pathology. This will indicate the clinical 
applicability and utility of this DTI processing paradigm. 
Also, we are expanding the size of the dataset, to identify 
whether the regions that show trends of change but are not 
significant, demonstrate significant difference in a larger 
dataset. We are also applying this method to other diseases 
in which changes are not too subtle.  
             In summary, we expect that a comprehensive 
examination of any disease using the DTI processing 
pipeline that we propose called MBM, will elucidate subtle 
regional changes and subtle disruptions of connectivity. We 
expect that in long-term, these tools will be used for 
prognosis and for studying subtle temporal white matter 
changes which may be an indicator of pathology.  
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